skip to main content


Search for: All records

Creators/Authors contains: "Wiens, John J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Most of life’s vast diversity of species and phenotypes is often attributed to adaptive radiation. Yet its contribution to species and phenotypic diversity of a major group has not been examined. Two key questions remain unresolved. First, what proportion of clades show macroevolutionary dynamics similar to adaptive radiations? Second, what proportion of overall species richness and phenotypic diversity do these adaptive-radiation-like clades contain? We address these questions with phylogenetic and morphological data for 1226 frog species across 43 families (which represent >99% of all species). Less than half of frog families resembled adaptive radiations (with rapid diversification and morphological evolution). Yet, these adaptive-radiation-like clades encompassed ~75% of both morphological and species diversity, despite rapid rates in other clades (e.g., non-adaptive radiations). Overall, we support the importance of adaptive-radiation-like evolution for explaining diversity patterns and provide a framework for characterizing macroevolutionary dynamics and diversity patterns in other groups.

     
    more » « less
  2. Abstract

    The evolution of sexually selected traits is a major topic in evolutionary biology. However, large-scale evolutionary patterns in these traits remain understudied, especially those traits used in male–male competition (weapons sensu lato). Here, we analyze weapon evolution in chamaeleonid lizards, both within and between the sexes. Chameleons are an outstanding model system because of their morphological diversity (including 11 weapon types among ~220 species) and a large-scale time-calibrated phylogeny. We analyze these 11 traits among 165 species using phylogenetic methods, addressing many questions for the first time in any group. We find that all 11 weapons have each evolved multiple times and that weapon origins are generally more frequent than their losses. We find that almost all weapons have each persisted for >30 million years (and some for >65 million years). Across chameleon phylogeny, we identify both hotspots for weapon evolution (up to 10 types present per species) and coldspots (all weapons absent, many through loss). These hotspots are significantly associated with larger male body size, but are only weakly related to sexual-size dimorphism. We also find that weapon evolution is strongly correlated between males and females. Overall, these results provide a baseline for understanding large-scale patterns of weapon evolution within clades.

     
    more » « less
  3. Abstract

    Allometry is the scaling relationship between a trait and body size. This relationship can often explain considerable morphological variation within and among species. Nevertheless, much remains unknown about the factors that underlie allometric patterns. For example, when different allometric relationships are observed amongst closely related species, these differences are regularly considered to be products of selection. However, directional selection on allometry (particularly the slope) has rarely been tested and observed in natural populations. Here, we investigate selection on the scaling relationship between weapon size and body size (i.e., weapon allometry) in a wild population of giant mesquite bugs, Pachylis neocalifornicus (previously Thasus neocalifornicus). Males in this species use their weapons (enlarged femurs) to compete with one another over access to resources and females. We found that large males with relatively large weapons successfully secured access to mates. However, we also found that small males with relatively small weapons could access mates as well. These two patterns together can increase the allometric slope of the sexually selected weapon, suggesting a straightforward process by which the allometric slope can evolve.

     
    more » « less
  4. O'Connell, Mary (Ed.)
    Abstract The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1–307 genes per taxon. We then produced a combined phylogenomic–supermatrix data set (a “gigamatrix”) containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Abstract

    How many species are there on Earth and to what groups do these species belong? These fundamental questions span systematics, ecology, and evolutionary biology. Yet, recent estimates of overall global biodiversity have ranged wildly, from the low millions to the trillions. Insects are a pivotal group for these estimates. Insects make up roughly half of currently described extant species (across all groups), with ~1 million described species. Insect diversity is also crucial because many other taxa have species that may be unique to each insect host species, including bacteria, apicomplexan protists, microsporidian fungi, nematodes, and mites. Several projections of total insect diversity (described and undescribed) have converged on ~6 million species. However, these projections have not incorporated the morphologically cryptic species revealed by molecular data. Here, we estimate the extent of cryptic insect diversity. We perform a systematic review of studies that used explicit species-delimitation methods with multilocus data. We estimate that each morphology-based insect species contains (on average) 3.1 cryptic species. We then use these estimates to project the overall number of species on Earth and their distribution among major groups. Our estimates suggest that overall global biodiversity may range from 563 million to 2.2 billion species. [Biodiversity; cryptic species; insects; species delimitation; species richness.]

     
    more » « less
  6. Abstract

    Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large‐scale, species‐level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.

     
    more » « less
  7. Abstract Aim

    There has been considerable interest in niche conservatism, the idea that ecological variables are similar among related species. Much research has focused on climatic niches of recently diverged species, rather than deeper timescales or non‐climatic niche axes. Furthermore, it has been suggested that conservatism disappears over deeper timescales, and is greater in alpha niche traits (like diet and microhabitat) than beta niche variables (like climate). Here, we test these latter two ideas by comparing patterns of phylogenetic conservatism among 10 niche variables across major clades of land vertebrates.

    Location

    Global.

    Time Period

    Present to 350 million years ago.

    Major Taxa Studied

    Tetrapods, including amphibians, mammals, lepidosaurs (including lizards and snakes), turtles, crocodilians and birds.

    Methods

    The 10 niche variables included four alpha niche components (diet, diel activity, habitat, body temperature) and six beta niche components (related to climatic temperature and precipitation). We analysed these variables on time‐calibrated phylogenies with similar taxon sampling (~1700 species), using phylogenetic signal (lambda) to estimate conservatism, along with theDstatistic and estimates of evolutionary rates.

    Results

    Phylogenetic signal was generally strong across all variables, with lambda generally >0.80 (with 1.0 representing maximum signal). Nevertheless, mean phylogenetic signal was lower in beta niche traits than alpha niche traits (based on lambda and especially theDstatistic), and alpha niche traits showed significantly slower rates of evolution.

    Main Conclusions

    We address two long‐held views in the literature on niche conservatism, rejecting one but supporting the other. We show that phylogenetic signal does not disappear over deep timescales for many important niche variables, even over 350 million years. We also generally support greater conservatism in alpha niche traits than beta niche traits over hundreds of millions of years, a pattern that was previously suggested (but not explicitly tested) based on closely related species.

     
    more » « less
  8. Briffa, Mark (Ed.)
    Abstract When individuals engage in fights with conspecifics over access to resources, injuries can occur. Most theoretical models suggest that the costs associated with these injuries should influence an individual’s decision to retreat from a fight. Thus, damage from intraspecific combat is frequently noted and quantified. However, the fitness-related costs associated with this damage are not. Quantifying the cost of fighting-related damage is important because most theoretical models assume that it is the cost associated with the damage (not the damage itself) that should influence an individual’s decision to retreat. Here, we quantified the cost of fighting-related injuries in the giant mesquite bug, Thasus neocalifornicus. We demonstrate that experimentally simulated fighting injuries result in metabolic costs and costs to flight performance. We also show that flight costs are more severe when the injuries are larger. Overall, our results provide empirical support for the fundamental assumption that damage acquired during intraspecific combat is costly. 
    more » « less